ON FREE EXTERIOR POWERS

BY HARLEY FLANDERS(1)

1. Introduction. We study modules over a commutative ring R with unity. We seek properties of a module M for which some exterior power $\bigwedge^p M$ is free of finite rank one or finitely generated.

This work originated in discussions with Howard Osborn. Several of his conjectures are settled below.

2. Preliminaries. Let R be a commutative ring with unity and let M be an R module (always assumed unital: 1x = x for $x \in M$).

LEMMA 1. Suppose $\bigwedge^n \mathbf{M} = \mathbf{0}$. Then

Proof. The map

$$(x_1 \wedge \cdots \wedge x_n, y_1 \wedge \cdots \wedge y_n) \rightarrow x_1 \wedge \cdots \wedge y_n$$

induces a surjection

$$(\bigwedge^n M) \otimes (\bigwedge^p M) \to \bigwedge^{n+p} M.$$

The conclusion is immediate.

LEMMA 2. Let $S = (s_1, ..., s_n)$ and T be ideals of R such that S + T = R. Then for each p,

$$(s_1^p,\ldots,s_n^p)+T=R.$$

This is proved by induction starting with the standard fact in commutative ideal theory that $S_1 + T = S_2 + T = R$ implies $S_1S_2 + T = R$.

3. Vanishing of powers. The following result was conjectured by H. Osborn in the free case.

THEOREM 1. Suppose for some p that $\bigwedge^p M$ is a cyclic R-module. Then $\bigwedge^{p+k} M = 0$ for $k = 1, 2, \ldots$

Proof. It suffices to prove that $\bigwedge^{p+1} M = 0$. Let e be a generator of $\bigwedge^p M$ and let T denote the ideal of annihilators of $\bigwedge^p M$, i.e., annihilators of e. Then

$$e = \sum_{1}^{n} x_{i1} \wedge \cdots \wedge x_{ip}, \quad x_{ij} \in M.$$

Received by the editors December 23, 1968 and, in revised form, May 22, 1969.

⁽¹⁾ This research was supported by National Science Foundation Grant GP 6388. Reproduction for any purpose by the United States Government is permitted.

But $x_{i1} \wedge \cdots \wedge x_{ip} = s_i e$, $s_i \in \mathbb{R}$; hence $\sum s_i e = e$. It follows that $S + T = \mathbb{R}$ where $S = (s_1, \ldots, s_n)$.

Now let $y_0 \wedge \cdots \wedge y_p \in \bigwedge^{p+1} M$, where $y_i \in M$. If $t \in T$, then

$$t(y_0 \wedge \cdots \wedge y_p) = y_0 \wedge [t(y_1 \wedge \cdots \wedge y_p)] = 0.$$

Hence, by Lemma 2, we shall have proved that $y_0 \wedge \cdots \wedge y_p = 0$ once we have shown that $s_i^2(y_0 \wedge \cdots \wedge y_p) = 0$. It suffices to consider i = 1. Now

$$y_1 \wedge \cdots \wedge y_p = re$$
 and $y_0 \wedge x_{11} \wedge \cdots \wedge x_{1,p-1} = r'e$,

hence

$$s_1^2(y_0 \wedge \cdots \wedge y_p) = s_1^2r(y_0 \wedge e)$$

$$= s_1r(y_0 \wedge x_{11} \wedge \cdots \wedge x_{1p})$$

$$= s_1rr'(e \wedge x_{1p})$$

$$= rr'(x_{11} \wedge \cdots \wedge x_{1p} \wedge x_{1p})$$

$$= 0$$

The natural generalization of this result is the conjecture that if $\bigwedge^p M$ can be generated by q elements, then $\bigwedge^{p+q} M = 0$. It is doubtful that this is true; however, we do have the following.

THEOREM 2. Suppose for some value of p that $\bigwedge^p M$ is a free module of finite rank q. Then $\bigwedge^{p+q} M = 0$.

Proof. Let e_1, \ldots, e_q be a basis of $\bigwedge^p M$. Then

$$e_i = \sum_j x_{ij}, \quad x_{ij} = x_{ij1} \wedge \cdots \wedge x_{ijp},$$

and

$$x_{ij} = \sum s_{ijk}e_k, \quad s_{ijk} \in \mathbf{R}.$$

Hence

$$e_i = \sum_k \left(\sum_j s_{ijk}\right) e_k, \qquad \sum_j s_{ijk} = \delta_{ik}.$$

Here $1 \le i, k \le q$. Now select any $(j_1, j_2, \dots, j_q) = j$. By Cramer's rule,

$$[\det (s_{ij_{i}k})_{i,k}]e_{r} \in \sum_{m=1}^{q} Rx_{mj_{m}}.$$

Call the determinant factor Δ_j . These determinants together generate the unit ideal R since

$$1 = \det (\delta_{ij}) = \det \left(\sum_{j} s_{ijk}\right)_{i,k} = \sum \Delta_{j}.$$

Renumbering, we have obtained quantities $t_1, t_2, \ldots \in R$ such that

- (i) $(t_1, t_2, \ldots) = R$,
- (ii) for each i,

$$t_i \bigwedge^p \mathbf{M} \leq \sum_{k=1}^q \mathbf{R} y_{ik},$$

where the y_{ik} are pure *p*-vectors. From (i) and Lemma 2 above, $(t_1^{q+1}, t_2^{q+1}, \ldots) = R$. We shall prove that

$$t_i^{q+1}(\bigwedge^{p+q} M) = 0$$
 $(i = 1, 2, ...),$

which implies $\bigwedge^{p+q} M = 0$. It suffices to prove

$$t^{q+1}(\bigwedge^{p+q} M) = 0$$

if $t(\bigwedge^p M)$ is contained in a submodule of $\bigwedge^p M$ generated by q pure p-vectors $y_i = y_{i1} \wedge \cdots \wedge y_{ip}$ $(i = 1, \ldots, q)$. We resort to "abuse of language" to save notation in the calculation that follows:

$$t^{q+1}(\bigwedge^{p+q} M) = t^{q+1}(\bigwedge^{p} M) \wedge (\bigwedge^{q} M)$$

$$\leq t^{q} \sum R y_{i} \wedge (\bigwedge^{q} M) = t^{q} \sum R y_{i1} \wedge (\bigwedge^{p} M) \wedge (\bigwedge^{q-1} M)$$

$$\leq t^{q-1} \sum R y_{i1} \wedge y_{j} \wedge (\bigwedge^{q-1} M)$$

$$= t^{q-1} \sum R y_{i1} \wedge y_{j1} \wedge (\bigwedge^{p} M) \wedge (\bigwedge^{q-2} M)$$

$$\leq \cdots = \cdots$$

$$\leq \sum R y_{i1} \wedge y_{j1} \wedge \cdots \wedge y_{k1}.$$

But each (q+1)-tuple of indices (i, j, ..., k) contains a repetition, hence the last module written vanishes. This completes the proof.

Besides the conjecture mentioned before the statement of the theorem, one might also ask whether

$$\wedge^{q+1}(\wedge^p M) = 0 \qquad (p \ge 1, q \ge 0)$$

implies

$$\wedge^{p+q} M = 0.$$

4. **Duality.** Let M be an R-module, and denote its conjugate space by $M^* = \text{Hom } (M, R)$. Recall the natural homomorphisms:

$$\bigwedge^p M^* \to (\bigwedge^p M)^*, \qquad M \to (M^*)^*.$$

The first is based on the pairing

$$\langle f_1 \wedge \cdots \wedge f_p, z_1 \wedge \cdots \wedge z_p \rangle = \det(\langle f_i, z_j \rangle)$$

of

$$(\bigwedge^p M^*) \times (\bigwedge^p M) \to R.$$

If $\bigwedge^p M$ is free of rank one with basis e, then there are further natural (relative to e) homomorphisms:

$$\bigwedge^r M \to (\bigwedge^{p-r} M)^* \qquad (r = 0, \ldots, p),$$

based on

$$(z_1 \wedge \cdots \wedge z_r) \wedge (z_{r+1} \wedge \cdots \wedge z_r) = f(z_{r+1} \wedge \cdots \wedge z_r)e.$$

The main result of this section, the theorem below, settles several conjectures of H. Osborn.

THEOREM 3. Let M be an R-module such that $\bigwedge^p M$ is free of rank one for some value of p. Then the following hold:

- (i) M and M* are finitely generated.
- (ii) $\bigwedge^p M^*$ is free of rank one.
- (iii) The natural map $\bigwedge^p M^* \to (\bigwedge^p M)^*$ is an isomorphism.
- (iv) M is reflexive: the natural map $M \rightarrow M^{**}$ is an isomorphism.
- (v) For each r = 0, ..., p, the natural map $\bigwedge^r M^* \to (\bigwedge^r M)^*$ is an isomorphism. In addition, each module $\bigwedge^r M$, $\bigwedge^r M^*$ is reflexive:

$$\wedge^r M \approx (\wedge^r M)^{**}, \qquad \wedge^r M^* \approx (\wedge^r M^*)^{**}.$$

(vi) For each $r=0,\ldots,p$, the natural map (relative to a basis of $\bigwedge^p M$)

$$\bigwedge^r M \to (\bigwedge^{p-r} M)^*$$

is an isomorphism.

(vii) The modules M and M^* are projective.

The proof will involve several steps.

LEMMA 3. If $F \in (\bigwedge^p M)^*$ and $z_0, \ldots, z_p \in M$, then

$$\sum (-1)^{j} F(z_0 \wedge \cdots \wedge z_{j-1} \wedge z_{j+1} \wedge \cdots \wedge z_p) z_j = 0.$$

Proof. The mapping

$$(z_0,\ldots,z_p) \rightarrow \sum_{j=1}^{\infty} (-1)^j F(z_0 \wedge \cdots \wedge z_{j-1} \wedge z_{j+1} \wedge \cdots \wedge z_p) z_j$$

is alternating multilinear on $\times^{p+1} M \to M$, hence vanishes identically by Theorem 1.

For the next steps it is convenient to fix certain elements of R, M, M*, and their exterior powers.

Let e be a basis of $\bigwedge^p M$. Then $e = \sum_{i=1}^n b_i x_i$, where $b_i \in R$, $x_i = x_{i1} \wedge \cdots \wedge x_{ip}$. Since e is a basis, $x_i = s_i e$, $\sum b_i s_i = 1$. Set

$$y_{ij} = (-1)^{j-1} x_{i1} \wedge \cdots \wedge x_{i,j-1} \wedge x_{i,j+1} \wedge \cdots \wedge x_{ip} \in \bigwedge^{p-1} M,$$

so $x_i = x_{ij} \wedge y_{ij}$. Define $f_{ij} \in M^*$ by

$$\langle f_{ij}, z \rangle e = z \wedge y_{ij} \qquad (1 \le i \le n, 1 \le j \le p).$$

Then $\langle f_{ij}, x_{ij} \rangle = s_i, \langle f_{ij}, x_{ik} \rangle = 0 \ (k \neq j)$. Set $f_i = f_{i1} \wedge \cdots \wedge f_{ip} \in \bigwedge^p M^*$. Then

$$\langle f_i, x_i \rangle = \det (\langle f_i, x_{ik} \rangle)_{i,k} = s_i^p.$$

Also by a simple determinant computation, $\langle f_i, z \wedge y_{ij} \rangle = s_i^{p-1} \langle f_{ij}, z \rangle$.

The key to the whole proof is the following

LEMMA 4. For $z \in M$ and for $g \in M^*$ we have

$$s_{i}z = \sum_{j=1}^{p} \langle f_{ij}, z \rangle x_{ij},$$

$$s_{i}g = \sum_{j=1}^{p} \langle g, x_{ij} \rangle f_{ij}$$

$$(1 \le i \le n).$$

Proof. Since $\bigwedge^p M$ is free with basis e, there is an $F \in (\bigwedge^p M)^*$ such that F(e) = 1. Apply Lemma 3 to F; z, x_{i1}, \ldots, x_{ip} :

$$F(x_i)z = \sum_i F(z \wedge y_{ij})x_{ij}.$$

But $F(x_i) = F(s_i e) = s_i$ and $F(z \wedge y_{ij}) = F(\langle f_{ij}, z \rangle e) = \langle f_{ij}, z \rangle$, so the first relation follows.

Now apply g to this relation:

$$s_i\langle g,z\rangle = \sum_i \langle f_{ij},z\rangle\langle g,x_{ij}\rangle.$$

Since this is true for all $z \in M$, the second relation follows.

LEMMA 5. If $z \in M$ and if $g \in M^*$, then

$$z = \sum_{i,j} b_i \langle f_{ij}, z \rangle x_{ij}, \qquad g = \sum_{i,j} b_i \langle g, x_{ij} \rangle f_{ij}.$$

Proof. Multiply each relation in Lemma 4 by b_i and sum.

Proof of (i), Theorem 3. By Lemma 5, the x_{ij} $(1 \le i \le n, 1 \le j \le p)$ span M and the f_{ij} span M^* .

By Lemma 2, $(s_1^p, \ldots, s_n^p) = \mathbf{R}$. Hence there are $a_i \in \mathbf{R}$ satisfying

$$\sum_{1}^{n} a_i s_i^p = 1.$$

Set

$$f=\sum_{i=1}^{n}a_{i}s_{i}f_{i}\in\bigwedge^{p}\boldsymbol{M^{*}}.$$

LEMMA 6. $s_i \langle f_i, e \rangle = s_i^p, \langle f, e \rangle = 1.$

Proof.

$$s_i \langle f_i, e \rangle = \langle f_i, s_i e \rangle = \langle f_i, x_i \rangle = s_i^p,$$

 $\langle f, e \rangle = \sum a_i s_i \langle f_i, e \rangle = \sum a_i s_i^p = 1.$

LEMMA 7. For each $g \in \bigwedge^p M^*$, $g = \langle g, e \rangle f$.

Proof. It suffices to prove this for g pure, $g = g_1 \wedge \cdots \wedge g_p$. By Lemma 4, $s_i g_k = \sum_j \langle g_k, x_{ij} \rangle f_{ij}$. Multiply these together:

$$s_i^p g = \langle g, x_i \rangle f_i = \langle g, e \rangle s_i f_i$$

Multiply by a_i and sum to complete the proof.

LEMMA 8. For each i, $s_i f_i = s_i^p f$.

Proof. $s_i f_i = \langle s_i f_i, e \rangle f = \langle f_i, s_i e \rangle f = \langle f_i, x_i \rangle f = s_i^p f$.

Proof of (ii), Theorem 3. By Lemma 7, f spans $\bigwedge^p M^*$. By Lemma 6, if cf = 0, then $c = c\langle f, e \rangle = 0$, hence f is free, $\bigwedge^p M^*$ is free of rank one with basis f.

Proof of (iii), Theorem 3. By Lemma 6, $f \rightarrow$ generator of $(\bigwedge^p M)^*$, so the map is an isomorphism.

Lemma 9. The natural map $M \rightarrow M^{**}$ is injective.

Proof. Suppose $z \in M$ and g(z) = 0 for all $g \in M^*$. By the first formula in Lemma 5, z = 0.

To complete the proof of (iv) we must study the homomorphisms of M^* induced by the x_{ij} . Let

$$x_{ij} \rightarrow \phi_{ij} \in M^{**}$$
 $\phi_{ij}(g) = \langle g, x_{ij} \rangle.$

LEMMA 10. For each $\phi \in M^{**}$.

$$s_i \phi = \sum_{j=1}^p \phi(f_{ij}) \phi_{ij} \qquad (1 \le i \le n),$$

$$\phi = \sum_{i,j} b_i \phi(f_{ij}) \phi_{ij}.$$

Proof. Let $g \in M^*$. Apply ϕ to the second formula of Lemma 4:

$$s_i\phi(g) = \sum_j \langle g, x_{ij}\rangle \phi(f_{ij}) = \sum_j \phi(f_{ij})\phi_{ij}(g).$$

Hence the first formula of Lemma 10; the second formula easily follows.

Proof of (iv), Theorem 3. The map $M \to M^{**}$ is injective by Lemma 9 and surjective by Lemma 10 (since $x_{ij} \to \phi_{ij}$), hence is an isomorphism.

Now we prepare for the proofs of (v) and (vi). The cases r=0, r=p are trivial. Fix r, $1 \le r \le p-1$. As before, let H run over r-element subsets of $\{1, \ldots, p\}$ and let H' denote the complement of H. Set

$$x_{iH} = x_{ih_1} \wedge \cdots \wedge x_{ih_r} \in \bigwedge^r M$$
, etc.

LEMMA 11. If $z \in \bigwedge^r M$, then

$$s_i^r z = \sum_{tr} \langle f_{iH}, z \rangle x_{iH}.$$

If $g \in \bigwedge^r M^*$, then

$$s_i^r g = \sum_{H} \langle g, x_{iH} \rangle f_{iH},$$

both relations for $1 \le i \le n$.

These formulas follow easily from Lemma 4 applied to the special cases of z, g pure.

LEMMA 12. The x_{iH} span $\bigwedge^r M$ and the f_{iH} span $\bigwedge^r M^*$.

This follows from Lemma 11 and the consequences of Lemma 2: $(s_1^r, \ldots, s_n^r) = R$. **Proof of (v), Theorem 3.** Each $g \in \bigwedge^r M^*$ induces an element of $(\bigwedge^r M)^*$ via $z \to \langle g, z \rangle$. The resulting map $\bigwedge^r M^* \to (\bigwedge^r M)^*$ is injective. For suppose $\langle g, z \rangle = 0$ for all z. By Lemma 11, $s_i^r g = 0$ for $1 \le i \le n$. But $R = (s_1^r, \ldots, s_n^r)$, hence g = 0.

The map is also surjective. For let $F \in (\bigwedge^r M)^*$. Apply F to the first formula of Lemma 11:

$$s_i^r F(z) = \sum_{\mu} \langle f_{iH}, z \rangle F(x_{iH}).$$

Select c_i so $\sum c_i s_i^r = 1$. Then

$$F(z) = \sum_{i,H} c_i F(x_{iH}) \langle f_{iH}, z \rangle,$$

which shows that F lies in the image of $\bigwedge^r M^*$. Hence the map is an isomorphism. Similar reasoning, applied to the second identity of Lemma 11, shows that each linear functional on $\bigwedge^r M^*$ is induced by a unique element of $\bigwedge^r M$, so each module is the conjugate of the other.

Proof of (vi), Theorem 3. We are considering the pairing

$$\pi: \bigwedge^r M \times \bigwedge^{p-r} M \to R$$

given by $z \wedge w = \pi(z, w)e$, which induces

$$\bigwedge^r M \to (\bigwedge^{p-r} M)^* \to \bigwedge^{p-r} M^*.$$

Statement (vi) asserts that this map is an isomorphism.

It is an injection. Suppose $z \to 0$ for some $z \in \bigwedge^r M$, which means $z \wedge w = 0$ for all $w \in \bigwedge^{p-r} M$. By Lemma 11,

$$s_i^r z = \sum_H \langle f_{iH}, z \rangle x_{iH}.$$

Hence in particular,

$$\sum_{H} \langle f_{iH}, z \rangle x_{iH} \wedge x_{iK'} = 0,$$

where |K| = r. Thus for each H, and each i,

$$\langle f_{iH}, z \rangle x_i = 0,$$

$$s_i \langle f_{iH}, z \rangle = 0.$$

To prove z=0, we shall show that the $s_i f_{iH}$ span $\bigwedge^r M^*$ and appeal to conclusion (v) of the theorem. But the second formula of Lemma 11 implies that if $g \in \bigwedge^r M^*$, then $s_i^{r+1}g$ is a linear combination of $s_i f_{iH}$. Since $(s_1^{r+1}, \ldots, s_n^{r+1}) = \mathbb{R}$, so is g.

Now let $F \in (\bigwedge^{p-r} M)^*$. If $w \in \bigwedge^{p-r} M$, then (Lemma 11)

$$s_i^{p-r}w = \sum_{\kappa} \langle f_{i\kappa'}, w \rangle x_{i\kappa'}.$$

Hence

$$s_i^{p-r}F(w) = \sum_{H} \langle f_{iH'}, w \rangle F(x_{iH'})$$

on the one hand, showing that the functionals $w \to s_i \langle f_{iH'}, w \rangle \operatorname{span} (\bigwedge^{p-r} M)^*$; and

$$s_i^{p-r} x_{iH} \wedge w = \varepsilon_{H,H'} \langle f_{iH'}, w \rangle s_i e$$

or $s_i^{p-r}\pi(x_{iH}, w) = \varepsilon_{H,H} \cdot s_i \langle f_{iH'}, w \rangle$ on the other hand. This latter relation shows that each $w \to s_i \langle f_{iH'}, w \rangle$ is the image of $\pm s_i^{p-r} x_{iH}$; the mapping is surjective.

Proof of (vii), Theorem 3. Suppose we have homomorphisms

$$\begin{array}{c}
M \\
\downarrow \phi \\
A \longrightarrow C \longrightarrow 0
\end{array}$$

where the row is exact. Select $u_{ij} \in A$ so $\psi(u_{ij}) = \phi(x_{ij})$. Define $\lambda : M \to A$ by

$$\lambda(z) = \sum b_i \langle f_{ij}, z \rangle u_{ij}.$$

By Lemma 5, $\psi \circ \lambda = \phi$. Hence **M** is projective; similarly **M*** is so.

REMARK. The isomorphism

$$\bigwedge^r M \to \bigwedge^{p-r} M^*$$

can be made explicit by use of interior products. Indeed, as Professor Osborn has pointed out, this provides an alternate proof of (v). The products \bot and \bot are defined by

$$\langle f \perp z, w \rangle = \langle f, z \wedge w \rangle$$

for $z \in \bigwedge^r M$, $w \in \bigwedge^{p-r} M$,

$$\langle g, h \perp e \rangle = \langle h \wedge g, e \rangle$$

for $h \in \bigwedge^{p-r} M^*$, $g \in \bigwedge^r M^*$. Thus

The basic relation is the Cauchy-Binet Formula:

$$\langle f \rfloor z, g \rfloor e \rangle = \langle g, z \rangle$$

for $z \in \bigwedge^r M$, $g \in \bigwedge^{p-r} M^*$.

This is proved by calculation for the generators x_{iH} , $f_{iK'}$. An easy consequence is the following pair of formulas:

$$(f_{\perp}z) \perp e = (-1)^{r(p-r)}z$$
$$f_{\parallel}(h \perp e) = (-1)^{r(p-r)}h$$

for $z \in \bigwedge^r M$, $h \in \bigwedge^{p-r} M^*$. Hence $z \to f_z$, $h \to h_e$ are isomorphisms, inverses of each other up to sign.

5. Other results. The following special case of Theorem 3 has some interest.

THEOREM 4. Suppose $\bigwedge^p M$ is free of rank one and $\bigwedge^p M = Re$ where e is a pure vector, $e = x_1 \wedge \cdots \wedge x_p$. Then M is a free module of rank p.

Proof. Proceed as above, but with n=1, $s_1=1$. Thus $\langle f_i, x_j \rangle = \delta_{ij}$ so x_1, \ldots, x_p are linearly independent. We know they span (Lemma 5), hence they form a basis of M.

The following result is due to Osborn, who used it to obtain part of Theorem 3 under stronger hypotheses.

THEOREM 5. Suppose R is a local ring and $\bigwedge^p M$ is free of rank one. Then M is free.

Proof. Use the notation of Theorem 3. Then $\bigwedge^p M$ has basis $e = \sum b_i x_i$, where x_i are pure *p*-vectors, and $x_i = s_i e$ with $\sum b_i s_i = 1$. Since **R** is a local ring and $(s_1, \ldots, s_n) = \mathbf{R}$, some s_i is a unit, hence x_i is a basis and Theorem 4 applies.

Lemma 3 above can be generalized in a way which might be useful.

THEOREM 6. Let $\bigwedge^p M$ be cyclic. Let

$$F \in \text{Hom}(\bigwedge^r M, N_1)$$
 and $G \in \text{Hom}(\bigwedge^{p-r+1} M, N_2)$.

Let $z_0, \ldots, z_p \in M$. Then

$$\sum_{H} \varepsilon_{H,H'} F(z_H) \otimes G(z_{H'}) = 0,$$

where H runs over r element subsets of $\{0, 1, ..., p\}$,

$$H = \{i_1 < i_2 < \cdots < i_r\}, \qquad H' = \{j_0 < j_1 < \cdots < j_{p-r}\}$$

is the complement of H in $\{0, 1, ..., p\}$, and

$$z_H = z_{i_1} \wedge z_{i_2} \wedge \cdots \wedge z_{i_r}, \qquad z_{H'} = z_{j_0} \wedge \cdots \wedge z_{j_{p-r}}.$$

Proof. The map

$$(z_0,\ldots,z_p) \to \sum_{H} \varepsilon_{H,H'} F(z_H) \otimes G(z_{H'})$$

is alternating multilinear on

$$\times^{p+1}M \to (\bigwedge^r N_1) \otimes (\bigwedge^{p-r+1} N_2).$$

But $\bigwedge^{p+1} M = 0$ by Theorem 1, hence the map vanishes.

Some of the obvious generalizations of Theorem 3, conclusion (i) are wrong. For example the Z module M = Q/Z is not finitely generated, but $\bigwedge^2 M = 0$. Thus in general $\bigwedge^p M$ finitely generated does not imply M finitely generated. Also $\bigwedge^p M$ finitely generated (or even generated by one element) does not imply $\bigwedge^p M^*$ finitely generated. For example, let k be a field, V a (countably) infinite dimensional k-space. Set $R = k \oplus V$ with trivial multiplication in V. Set $M = R/V \approx k$. Then M is a cyclic R-module. But $M^* = \text{Hom } (M, R) \approx V$, so each $\bigwedge^p M^*$ is infinite dimensional.

In Theorem 2 it was shown that $\bigwedge^p M$ free of rank q implies $\bigwedge^{p+q} M = 0$. Assuming, of course, $q \ge 1$, does this imply $\bigwedge^p M^*$ free of rank q and the duality situation of Theorem 3? This is difficult and will be postponed for later investigation.

6. **Examples.** Let R be the ring of real analytic functions on the p-sphere S^p in Euclidean E^{p+1} defined by $x_0^2 + \cdots + x_p^2 = 1$. Let M be the module of real analytic differentiable one-forms on S^p . The $\bigwedge^p M$ is free of rank one with basis the element of area

$$\sigma = \sum (-1)^j x_j dx_0 \wedge \cdots \wedge dx_{j-1} \wedge dx_{j+1} \wedge \cdots \wedge dx_p.$$

By Theorem 3, M is projective; but M is not free unless S^p is parallelizable, i.e., p=1, 3, or 7. Our work above shows that each real analytic one-form on S^p can be written $\sum f_i dx_i$ where $f_i \in R$. (This is not obvious because the elements of M are cross sections of the bundle of one-forms at all points of S^p .) Similar remarks apply to any real analytic manifold which is orientable and is a submanifold of euclidean space.

An algebraic model may be constructed as follows. Let S be a ring and R = S[r, s, t] subject to $r^2 + s^2 + t^2 = 1$. Let M = Rx + Ry + Rz subject to rx + sy + tz = 0. Then $\bigwedge^2 M$ has the basis $e = ry \land z + sz \land x + tx \land y$ so M is projective; but M is not free.

A similar example is obtained from the ring R = S[a, b, c, r, s, t] subject to the single relation ar + bs + ct = 1. The module is M = Rx + Ry + Rz with the generating relation rx + sy + tz = 0. The element $e = ay \land z + bz \land x + cx \land y$ is a basis of $\bigwedge^2 M$, so M is projective; but M is not free.

To see that e is a basis, first observe by the defining relations that

$$x \wedge y = te$$
, $y \wedge z = re$, $z \wedge x = se$,

hence e generates $\bigwedge^2 M$. Next the map $F: \times^2 M \to R$ given by

$$F(\alpha_1 x + \alpha_2 y + \alpha_3 z, \beta_1 x + \beta_2 y + \beta_3 z) = \begin{vmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \\ r & s & t \end{vmatrix}$$

is well defined and is alternating bilinear, hence defines $F: \bigwedge^2 M \to R$. But F(e) = 1, hence e is free.

The proof that *M* is not free is more complicated.

REFERENCES

- 1. N. Bourbaki, "Algèbre multilinéaire", Chapter 3 of Algèbre, Hermann, Paris, 1948.
- 2. H. Flanders, Tensor and exterior powers, J. Algebra 7 (1967), 1-24.

Purdue University, Lafayette, Indiana